

It's not just anthracyclines anymore!

What every ambulatory anesthesiologist should know about cancer treatment cardiotoxicities

Kara M. Barnett, MD, FASA

Memorial Sloan Kettering Cancer Center

Director of Anesthesia Services at MSK Monmouth

Stephanie Feldman, MD

Memorial Sloan Kettering Cancer Center

Cardio-Oncology Fellow

Disclosures:

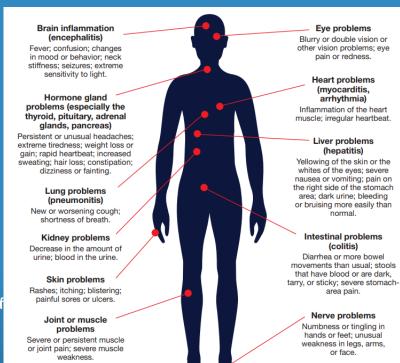
None

Objectives:

- Identify potentially cardiotoxic chemotherapies in preoperative evaluation
- Recognize signs of cancer therapy related cardiotoxicity
- Discuss cardiac preoperative evaluation and periprocedural implications based on patient cancer treatment history

Background

- Cancer 2nd leading cause of death in the US
- Estimated 1.8 million new cancer cases in 2020
- Prior mainstay treatment cytotoxic chemotherapy + radiation + surgery now includes targeted and immune- based therapies
- More than 20 million cancer survivors in the US in 2020

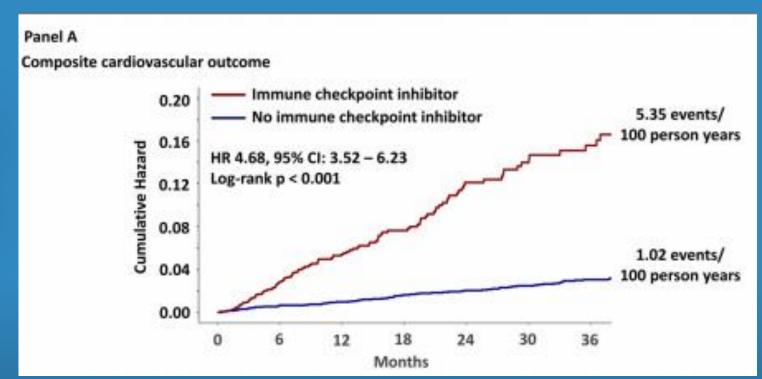

Immune Checkpoint Inhibitors (ICI)

- Monoclonal antibodies that target immune system regulation receptors to target cancer cells
- 7 FDA approved ICI: ipilimumab, nivolumab, pembrolizumab, cemiplimab, avelumab, atezolizumab, and durvalumab
- Approved treatment of at least 18 cancers including:
 melanoma, renal cell carcinoma, colorectal, NSCLC, lymphomas

Immune Related Adverse Events (iRAEs)

Incidence:
Up to 35% (rash)
1-5% (colitis,
pneumonitis)

Cappell LC et al. Immune-Related Adverse Effects of Cancer Immunotherapy-Implications for Rheumatology. *Rheum Dis Clin North Am.* 2017;43(1):65-78.

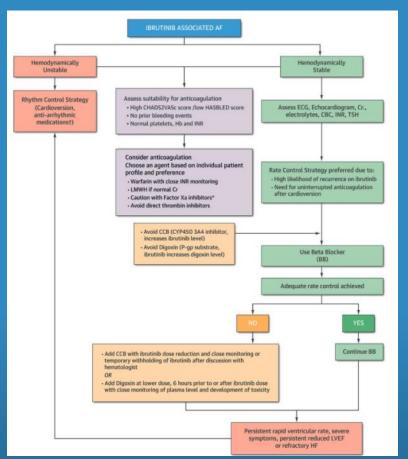

https://www.nccn.org/mages/pdf/mmunothera py_htcgraphic.pdf . Accessed 15 November 2020.

ICI Mediated Myocarditis

- Incidence 1-2.4%, mortality 38-46%
- Symptom onset most frequently within 2-3 months of treatment initiation
- Presentation non specific: fatigue, myalgia, chest pain, dyspnea
- Diagnosis: High level of suspicion, abnormal ECG, elevated troponin, atrial or ventricular arrhythmias, heart block, heart failure
- Treatment: Medical emergency! Immunosuppression

ICI and Adverse Cardiovascular Events

 ICI associated with threefold risk of cardiovascular events



Drobni ZD et al Association Between Immune Checkpoint Inhibitors With Cardiovascular Events and Atherosolerotic Plaque. *Circulation* 2020; Oct 2

Ibrutinib Related Atrial Fibrillation

- Ibrutinib: oral Bruton Tyrosine Kinase Inhibitor
- Used to treat: CLL, mantle cell lymphoma, Waldenstrom macroglobulinemia, marginal cell lymphoma
- Cardiac side effects: HTN, ventricular and atrial arrhythmias, excessive bleeding
- Incidence of atrial fibrillation 4-16%
- Management concerns: drug interactions, bleeding
- Should be stopped <u>7 days</u> prior to surgery due to bleeding risk

Ibrutinib Related Atrial Fibrillation

Ganatra Set al bruinto-Associated Atrial Florillation. JACC Clin Electrophysiol. 2018 Dec;4(12):1491-1500.

5-FU Cardiotoxicity

- 5-FU and oral prodrug capecitabine inhibit enzyme involved in DNA replication
- Used to treat: solid tumors of glandular and squamous origin
- Cardiac side effects: coronary vasospasm, MI, CHF, arrhythmia, pericarditis, coronary artery dissection, QT prolongation
- Incidence of cardiotoxicity 1 to 19%
- Management: Stop 5-FU, CAD evaluation, aspirin, calcium channel blocker, nitrates

Cancer Therapies Associated with Myocardial Infarction/Ischemia

Chemotherapy Agents	Frequency of Use	Incidence (%)	Prevention/ Treatment
Antimetabolites			
Capecitabine	++++	3-9	Ischemia workup and treatment
Flourouracil	++++	1-68	
Monoclonal antibody-based tyrosine kinase inhibitors			
Bevacizumab	+++	0.6-8.5	
Small molecule tyrosine kinase inhibitors			
Nilotinib	++++	5.0-9.4	
Ponatinib	+	12	
Angiogenesis inhibitors			
Lenalidomide	+++	0-1.9	
Antimicrotubule agents			
Paclitaxel	++++	<1.5	

Chemotherapy Related Hypertension

- Vascular endothelial growth factor (VEGF) inhibitors decrease NO production, angiogenesis → increased vascular resistance, fluid retention
- HTN reported in >50% patients on VEGF inhibitors
- Other mechanisms include thrombotic microangiopathy, nephrotoxicity
- HTN increases risk of CHF
- Rx: ACEi/ARB (if proteinuria), dihydropyridine CCB >> diuretics, chemo dose reduction/holiday

Cancer Therapies Associated with HTN

Chemotherapy Agents	Frequency of Use	Incidence (%)	Comments
Monoclonal antibody-based	tyrosine kinase i	inhibitors	Pre-treatment risk assessment
Bevacizumab	+++	4-35	
Ado-trastuzumab emtansine	+	5.1	BP goal <140/90 mm Hg
Monoclonal antibodies			Weekly BP monitoring in 1st cycle
Alemtuzumab	+	14	
Ibritumomab	NA	7	Every 2-3 weeks BP monitoring
Ofatumumab	+	5-8	for duration of therapy
Rituximab	+++	6-12	
mTor inhibitors			Initiate BP treatment when
Everolimus	++++	4-13	diastolic BP increases by
Temsirolimus	++	7	20 mm Hg

	Frequency	Incidence	
Chemotherapy Agents	of Use	(%)	Comments
Small molecule tyrosine kinase inhibitors			More than 1 anti-HTN medication
Pazopanib	++++	42	may be needed
Ponatinib	+	68	
Sorafenib	++++	7-43	Avoid diltiazem and verapamil
Sunitinib	++++	5-24	with sorafenib
Axitinib	++++	40	
Cabozantinib	NA	33-61	Hold chemotherapy as the last
Ibrutinib	++++	17	resort
Nilotinib	++++	10-11	Hold bevacizumab if systolic
Ramucirumab	+	16	BP >160 mm Hg or diastolic
Regorafenib	++++	30-59	BP >100 mm Hg
Trametinib	++++	15	
Vandetanib	NA	33	Early consultation with cardiologist
Ziv-aflibercept	+	41	cardiotogist
Proteasome inhibitors			
Bortezomib	++	6	
Carfilzomib	++	11-17	
Antimetabolites			
Decitabine	++	6	

Chang, H-M et al. Cardovascular Complications of Cancer Therapy. Journal of the American College of Cardioboy. 2017.

Anthracycline + HER-2 Targeted Therapy Related Cardiomyopathy

- Anthracycline + trastuzumab/pertuzumab mainstay of treatment for HER2+ breast cancer
- Incidence asymptomatic LVEF decline 4-30%
- Anthracycline mediated cardiotoxicity is dose dependent, usually seen within 1 year (median 3 months)
- 4x risk of cardiac dysfunction with addition of trastuzumab

Cancer Therapies Associated with Heart Failure/ LV Dysfunction

Chemotherapy Agents	Frequency of Use	Incidence (%)	Prevention/Treatment
Anthracyclines			
Doxorubicin	++++	3-26	Monitor EF, GLS, troponin dexrazoxane, continuous infusion, liposomal preparation, BB/ACEI
Epirubicin	+	0.9-3.3	
Idarubicin	++	5-18	
Alkylating agents			
Cyclophosphamide	++++	7-28	
Ifosfamide	+++	17	
Antimetabolites			
Decitabine	++	5	
Clofarabine	+	27	
Antimicrotubule agents			
Docetaxel	++	2.3-8.0	

Chemotherapy Agents	Frequency of Use	Incidence (%)	Prevention/Treatment
Monoclonal antibody-based tyrosine kinase inhibitors			
Trastuzumab	+++	2-28	Avoid concomitant use with anthracyclines
Bevacizumab	++	1.0-10.9	
Adotrastuzumab emtansine	+	1.8	
Pertuzumab	+	0.9-16.0	
Small molecule tyrosine kinase inhibitors			
Pazopanib	++++	0.6-11.0	Treat hypertension aggressively
Ponatinib	+	3-15	Ischemia workup and treatment
Sorafenib	++++	1.9-11.0	
Dabrafenib	++++	8-9	
Sunitinib	++++	1-27	
Dasatinib	++++	8-9	
Lapatinib	++++	0.9-4.9	
Trametanib	++++	7-11	
Proteasome inhibitor			
Carfilzomib	++	7	
Bortezomib	++	2-5	

Chang, H-M et al. Cardovascular Complications of Cancer Therapy. Journal of the American College of

Chemotherapy Induced QT Prolongation

- QT varies inversely with HR
- Friderica more accurate correction (QT/RR^{1/3})
 (https://www.mdcalc.com/corrected-qt-interval-qtc)
- Increased risk torsades de pointes with congenital LQT, antiemetics, some antibiotics, electrolyte abnormalities

QT Prolonging Cancer Therapy

	Frequency	Incidence	
Chemotherapy Agents	of Use	(%)	Comments
Histone deacetylase inhibitors			Tangent method of QT
Belinostat	+	4-11	measurement
Vorinostat	++++	3.5-6.0	
Chemicals			Fridericia correction formula
Arsenic trioxide	++	26-93	
Small molecule tyrosine			
Dabrafenib	++++	2-13	Correct low K or Mg
Dasatinib	++++	<1-3	
Lapatinib	++++	10-16	Remove QTc prolonging
Nilotinib	++++	<1-10	medications
Vandetanib	++++	8-14	QTc >500 ms or >60 ms above
BRAF inhibitor			baseline associated with TdP
Vemurafenib	++++	3	TdP reported for arsenic trioxide, sunitinib, pazopanib, vandetanib, vemurafenib

Pre-operative Assessment of Patient with Cancer History

- History: Oncologic history, prior and current treatment, treatment complications
- Medications: Current chemo, supportive medications
- Physical: Attention to BP, HR, volume status
- Prior Testing: Recent ECG, Echo for monitoring?

Pre-operative Assessment of Patient with Cancer History

Moderate or greater

(≥4 METs) functional

capacity

Proceed to surgery according to GDMT OR

alternate strategies noninvasive treatment

Excellen (>10 METs)

Proceed to

surgery

stress testing

(Class IIa)

abnormal

Coronary revascularization

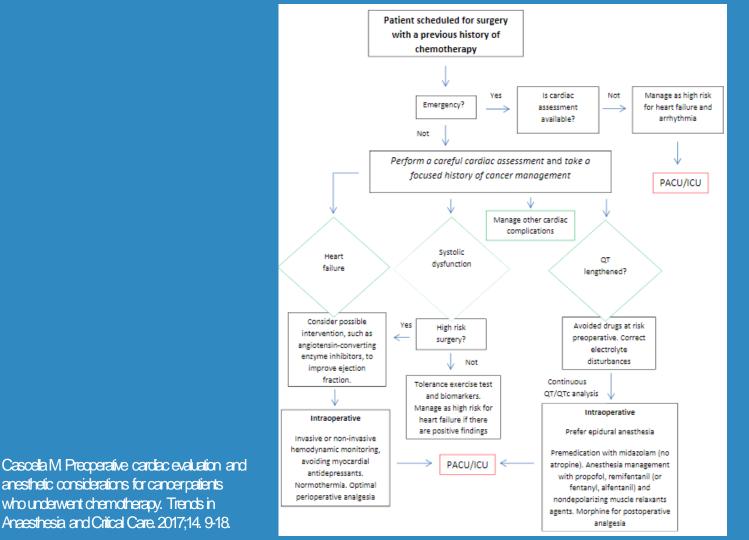
according to existing CPGs

(Class I)

Moderate/Good (≥4-10 METs) **ECG** *Consider if prior cardiotoxic chemo, current cardiotoxic chemo Poor OR unknown Proceed to functional capacity surgery (<4 METs): Pharmacologic Will further testing impact decision making OR perioperative care? (Step 6) normal

Low risk (<1%)

(Step 4)


Estimated perioperative risk of MACE based on combined clinical/surgical risk (Step 3)

Elevated risk

(Step 5)

If ECG abnormal consider TTE, cardiacevaluation

Fleisher LA et al; 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardac surgery. J Am Call Cardid. 2014 Dec 9.64(22):e77-137.

anesthetic considerations for cancerpatients

who underwent chemotherapy. Trends in

Anaesthesia and Critical Care. 2017;14. 9-18.

Take Home Points

- Many new cancer therapies with improved cancer prognosis as well as potential cardiac toxicities
- Pre-operative evaluation should include detailed cancer treatment history, active treatment, cardiac complications
- Drug interactions are common and can increase levels of chemo, increase bleeding risk, and increase risk of fatal arrhythmia

References

- Nierstedt RT, Yeahia R, Barnett KM. Unanticipated Myocarditis in a Surgical Patient Treated with Pembrolizumab: A Case Report. A&A Practice. 2020;14(6).
- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020 Jan; 70(1):7-30. doi: 10.3322/caac.21590. Epub 2020 Jan 8.
- Cappelli LC, Shah AA, Bingham CO 3rd. Immune-Related Adverse Effects of Cancer Immunotherapy-Implications for Rheumatology. *Rheum Dis Clin North Am*. 2017;43(1):65-78.doi:10.1016/j.rdc.2016.09.007
- https://www.nccn.org/images/pdf/lmmunotherapy Infographic.pdf. Accessed 15 November 2020.
- Lewis AL, Chaft J, Girotra M, Fischer GW. Immune checkpoint inhibitors: a narrative review of considerations for the anesthesiologist. BJA. 2020, 124L3):251-260.
- Dal'bo, N., Patel, R., Parikh, R. et al. Cardiotoxicity of Contemporary Anticancer Immunotherapy. Curr Treat Options Cardio Med 22, 62 (2020).
- Drobni ZD et al. Association Between Immune Checkpoint Inhibitors With Cardiovascular Events and Atherosderotic Plaque. *Graulation* 2020; Oct 2.
- Ganatra S, Sharma A, Shah S, Chaudhry GM, Martin DT, Neilan TG, Mahmood SS, Barac A, Groarke JD, Hayek SS, Dani S, Venesy D, Patten
- R, Nohria A. Ibrutinib-Associated Atrial Fibrillation. JACC Clin Electrophysiol. 2018 Dec;4(12):1491-1500.
- Wacker et all. High incidence of angina pectoris in patients treated with 5-fluorouracil. A planned surveillance study with 102 patients. *Oncology* 2003;65:108-12.
- Chang HM, Moudgil R, Scarabelli T et al. Cardiovascular Complications of Cancer Therapy: Best Practices in Diagnosis, Prevention, and Management: Part 1. J Am Coll Cardiol. 2017 Nov 14;70(20):2536-2551.
- Chang HM, Okwuosa TM, Scarabelli T, Moudgil R, Yeh ETH. Cardiovascular Complications of Cancer Therapy: Best Practices in Diagnosis, Prevention, and Management: Part 2. J Am Coll Cardiol. 2017 Nov 14;70(20):2552-2565

References

- Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F, Civelli M, Lamantia G, Colombo N, Curigliano G, Fiorentini C, Cipolla CM. Early detection of anthracydine cardiotoxicity and improvement with heart failure therapy. Circulation. 2015 Jun 2;131(22):1981-8.
- Nowsheen S et al. Incidence, Diagnosis, and Treatment of Cardiac Toxicity from Trastuzumab in Patients with Breast Cancer. Curr Breast Cancer Rep. 2017 Sep;9(3):173-182.
- Slamon DJ et al. Use of chemotherapy plus a monodonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001;344:783-792.
- Fradley MG, Moslehi J. QT prolongation and oncology drug development. *Card Electrophysiol Clin* 2015;7:341-55.
- Fleisher LA, Fleischmann KE, Auerbach A et al; American College of Cardiology; American Heart Association. 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol. 2014 Dec 9;64(22):e77-137.
- Cascella M. Preoperative cardiac evaluation and anesthetic considerations for cancer patients who underwent chemotherapy. Trends in Anaesthesia and Critical Care. 2017;14.9-18.
- Lewis AL, Chaft J, Girotra M, Fischer GW. Immune checkpoint inhibitors: a narrative review of considerations for the anesthesiologist. BJA. 2020, 124L3): 251-260.