

**SOCIETY FOR  
SAMBA  
SPECIALTY  
ANESTHESIA**

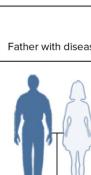
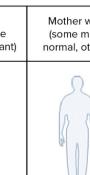
Outpatient • Office Based • Non-Operating Room

**2022 SAMBA ANNUAL MEETING**  
**MAY 11 - 14, 2022**

# Anesthetic Considerations for Patients With Mitochondrial Disease

1

2



The diagram illustrates the systemic clinical effects of mitochondrial dysfunction, showing how damage to mitochondrial DNA (mtDNA) and oxidative phosphorylation (OXPHOS) leads to various organ pathologies. Key components include:

- Central Nervous System:** Brain (Seizures, Myoclonus, Ataxia, Stroke, Dementia, Migraine) and Spinal Cord.
- Cardiovascular System:** Heart (Conduction disorder, Wolff-Parkinson-White syndrome, Cardiomyopathy).
- Respiratory System:** Inner ear (Sensorineural hearing loss).
- Visual System:** Eye (Optic neuropathy, Ophthalmoplegia, Retinopathy).
- Gastrointestinal System:** Colon (Pseudo-obstruction).
- Renal System:** Kidney (Fanconi's syndrome, Glomerulopathy).
- Hepatic System:** Liver (Hepatopathy).
- Pancreatic System:** Pancreas (Diabetes mellitus).
- Blood:** Blood (Pearson's syndrome).

The diagram also highlights the interaction between Nuclear DNA (in the nucleus) and Mitochondrial DNA (in the mitochondria), both contributing to the production of ATP through OXPHOS. A red arrow points to a specific site of mtDNA damage.

3

4

| Father with disease                                                                 | Mother with disease<br>(all mitochondria mutant)                                    | Mother with disease<br>(some mitochondria<br>normal, others mutant)                 |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|  |  |  |

5

## Anesthesia for patients with mitochondrial disease - the good news

- Most exposures to anesthetics for mitochondrial patients are without apparent complications
- Patients can tolerate a wide variety of anesthetics including the volatile anesthetics, propofol and local anesthetics.

6

**Anesthetic Decisions**

SOCIETY FOR  
AMBULATORY  
ANESTHESIA  
Department of Office-Based Non-Operating Room  
www.SAMBAhq.org

- These patients are at increased risk from the stress of surgery and anesthesia.
- Primary complications of mitochondrial myopathies include respiratory failure, cardiac depression, conduction defects and dysphagia.
- Mitochondrial patients often require **smaller doses** of general anesthetics, local anesthetics, sedatives, analgesics, and paralytics
- Avoid increasing the metabolic burden** of patients by not requiring prolonged fasting, and preventing hypoglycemia, PONV, hypothermia (with resulting shivering), prolonged orthopedic tourniquet application, acidosis, and hypovolemia.

2022 SAMBA ANNUAL MEETING · MAY 11 – 14, 2022

7

**IV fluids**

SOCIETY FOR  
AMBULATORY  
ANESTHESIA  
Department of Office-Based Non-Operating Room  
www.SAMBAhq.org

- Avoid glucose in those patients on ketogenic diet
- Supply glucose at maintenance rates with perioperative serum glucose monitoring in patients not on ketogenic diet
- Avoid lactate to their fluids
- Use D5 NS or 1/2 NS**



2022 SAMBA ANNUAL MEETING · MAY 11 – 14, 2022

8

**IV Solution Cheat Sheet**

| Type                       | Description                                | Osmolarity                               | Use                                                                                      | Miscellaneous                                                                                                                                                                                                                                                       |
|----------------------------|--------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Normal Saline (NS)         | 0.9% NaCl in Water                         | Isotonic (300 mOsm)                      | Increases total plasma volume and osmolarity are adequate                                | <ul style="list-style-type: none"> <li>Replaces losses without altering body fluid</li> <li>Helpful for Na+ replacement</li> </ul>                                                                                                                                  |
| 1/2 Normal Saline (1/2 NS) | 0.45% NaCl in Crystalloid Solution         | Hypotonic (154 mOsm)                     | Raises total fluid volume                                                                | <ul style="list-style-type: none"> <li>Used for daily maintenance of body fluid, but is of less value if hypotonic</li> <li>Helpful for establishing renal function</li> <li>Fluid replacement for clients who cannot tolerate extra glucose (diabetics)</li> </ul> |
| Lactated Ringer's (LR)     | Normal saline with weak polyes and buffers | Isotonic (275 mOsm)                      | Replaces fluid and buffers pH                                                            | <ul style="list-style-type: none"> <li>Provides lactate (buffer), Ca++, and glucose</li> <li>Often used with surgery</li> </ul>                                                                                                                                     |
| D-W                        | Dextrose 5% in crystalloid solution        | Isotonic (285 mOsm) Hypotonic (260 mOsm) | Raises total fluid volume and rehydrating electrolyte purposes                           | <ul style="list-style-type: none"> <li>Provides 1.000cc for energy, protein, and glucose</li> <li>The dextrose is metabolized during the day, so fluid remains - a hypotonic fluid</li> </ul>                                                                       |
| D <sub>2</sub> NS          | Dextrose 5% in 0.9% saline                 | Hypertonic (560 mOsm)                    | Replaces fluid sodium, potassium, and calories                                           | Watch for fluid volume overload                                                                                                                                                                                                                                     |
| D <sub>2</sub> 1/2 NS      | Dextrose 5% in 0.45% saline                | Hypertonic (405 mOsm)                    | Raises total fluid volume, daily maintenance, hydration, and nutrition, plus rehydration | Most common postoperative fluid                                                                                                                                                                                                                                     |
| D <sub>2</sub> LR          | Dextrose 5% in Lactated Ringer's           | Hypertonic (575 mOsm)                    | Provides D-W plus provides glucose and calories per liter                                | Watch for fluid volume overload                                                                                                                                                                                                                                     |
| Normosol-R                 | Normosol                                   | Isotonic (295 mOsm)                      | Replaces fluid and buffers pH                                                            | <ul style="list-style-type: none"> <li>pH 7.4</li> <li>Contains sodium, chloride, calcium, potassium and glucose</li> <li>Common fluid for OR and PACU</li> </ul>                                                                                                   |

nurseslabs

2022 SAMBA ANNUAL MEETING · MAY 11 – 14, 2022

9

**Adverse Outcomes**

SOCIETY FOR  
AMBULATORY  
ANESTHESIA  
Department of Office-Based Non-Operating Room  
www.SAMBAhq.org

- Respiratory depression can occur from the combination of anesthetics and existing muscle weakness.
- Reports of late, profound respiratory depression and/or CNS white matter degeneration in patients seemingly only mildly affected preoperatively, and who have had relatively uneventful anesthetic courses during surgery

2022 SAMBA ANNUAL MEETING · MAY 11 – 14, 2022

10

**Considerations**

SOCIETY FOR  
AMBULATORY  
ANESTHESIA  
Department of Office-Based Non-Operating Room  
www.SAMBAhq.org

- All general anesthetic agents studied has been shown to depress mitochondrial function, most notable are the volatile anesthetics and propofol
- Consider direct inhibition of the respiratory chain separately from the indirect effects of anesthetics on physiologic functions also affected by mitochondrial function such as respiratory drive, cardiac contractility, muscle strength.
- Anesthetics may depress certain systems by mitochondrial-independent mechanisms, such as GABA enhancement, but still lead to **additive inhibition** of organ systems affected by mitochondrial defects.

2022 SAMBA ANNUAL MEETING · MAY 11 – 14, 2022

11

**Volatile Agents**

SOCIETY FOR  
AMBULATORY  
ANESTHESIA  
Department of Office-Based Non-Operating Room  
www.SAMBAhq.org

- Does not require metabolism for excretion, thus advantageous over IV anesthetics, which are dependent on energy requiring metabolism.
- Each of the volatile anesthetics depresses respiration, through different mechanisms.
- Isoflurane and desflurane depress the ventilatory response to CO<sub>2</sub> response more than does sevoflurane.
- Sevoflurane and desflurane cause more direct muscle relaxation.
- Sevoflurane** would seem to be mildly advantageous in patients with mitochondrial defects.

2022 SAMBA ANNUAL MEETING · MAY 11 – 14, 2022

12



**Propofol**

SOCIETY FOR AMBULATORY ANESTHESIA  
Dedicated to Office-Based Non-Operating Room  
www.SAMBAhq.org

- Propofol has been shown to affect mitochondrial function by at least four different mechanisms.
- Decreases ventilatory drive, cardiac output, and contractility.
- Excretion of propofol is metabolism dependent.
- **Both propofol and thiopental have been used as induction agents successfully when used in a limited regimen such as for an induction bolus.**
- Some patients with mitochondrial defects may be susceptible to adverse reactions from propofol.

2022 SAMBA ANNUAL MEETING · MAY 11 – 14, 2022

13



**Opioids and Muscle Relaxants**

SOCIETY FOR AMBULATORY ANESTHESIA  
Dedicated to Office-Based Non-Operating Room  
www.SAMBAhq.org

- Generally, has not been shown to alter mitochondrial function, with possible exception of morphine.
- Must be considered carefully in patients who may already have respiratory compromise.

2022 SAMBA ANNUAL MEETING · MAY 11 – 14, 2022

14



**Local analgesics**

SOCIETY FOR AMBULATORY ANESTHESIA  
Dedicated to Office-Based Non-Operating Room  
www.SAMBAhq.org

- Patients with defects in fatty acid metabolism may have an increased sensitivity to toxicity from bupivacaine.

2022 SAMBA ANNUAL MEETING · MAY 11 – 14, 2022

15

| Medication                  | Mitochondrial Effects                                   |
|-----------------------------|---------------------------------------------------------|
| Barbiturates                | Complex I inhibition                                    |
| Etomide                     | Complex I inhibition, mild inhibition complex III       |
| Propofol                    | Acylcarnitine transferase, complexes I/II/IV inhibition |
| Benzodiazepines             | Complex I/II/III inhibition                             |
| Ketamine                    | Increase energy consumption<br>+/- reports of complex I |
| Dexmedetomidine             | None reported                                           |
| Fentanyl/remifentanil       | Minimal                                                 |
| Morphine                    | Mild complex I inhibition                               |
| Volatile Anesthetics        | Complex I inhibition                                    |
| Bupivacaine<br>(Etidocaine) | Acylcarnitine translocase<br>Mild complex I             |

2022 SAMBA ANNUAL MEETING · MAY 11 – 14, 2022

16



**Recommendations**

SOCIETY FOR AMBULATORY ANESTHESIA  
Dedicated to Office-Based Non-Operating Room  
www.SAMBAhq.org

- Minimizing preoperative fasting to avoid hypovolemia, hypoglycemia and increased metabolism of fatty acids
- Use muscle relaxants cautiously in patients with a preexisting myopathy or decreased respiratory drive
- Avoid lactate as some patients have difficulty metabolizing lactate and may become acidotic
- Tourniquets and pressure points to minimize regions of poor perfusion and oxygen delivery
- Avoid swings in body temperature as mitochondrial patients are unable to adapt well to either hypothermia or hyperthermia
- Slow titration of volatile and parenteral anesthetics to minimize hemodynamic changes, consider EEG monitoring
- Minimize PONV and use multimodal analgesic techniques

2022 SAMBA ANNUAL MEETING · MAY 11 – 14, 2022

17



**Safe for Ambulatory Surgery?**

SOCIETY FOR AMBULATORY ANESTHESIA  
Dedicated to Office-Based Non-Operating Room  
www.SAMBAhq.org

- Equipment, medical, and clinical resources
- Pathway for inpatient admission
- Consultation with geneticist, cardiologists, endocrinologist and other subspecialties
- Educate patient and family (or vice versa)
- Collaborative perioperative preparation, communications, and discussions
- Consider hospital setting and/or admission
  - Previous significant adverse reactions to anesthesia and/or surgery
  - Patient has moderate to severe clinical manifestations of the mitochondria and/or other medical co-morbidities
  - Limited resources at home during recovery

2022 SAMBA ANNUAL MEETING · MAY 11 – 14, 2022

18

References

SOCIETY FOR  
**SAMBA** ULATORY  
NETHESIA  
Dedicated to the Research and Clinical Application of Anesthesia  
[www.SAMBAhq.org](http://www.SAMBAhq.org)

- Brody KM. Anesthetic Management of the Patient with Mitochondrial Disease: A Review of Current Best Evidence. *AANA J*. 2022 Apr;90(2).
- Niegzoda J, Morgan PG. Anesthetic considerations in patients with mitochondrial defects. *Paediatr Anaesth*. 2013;23(9):785-793.
- Parikh, S., Goldstein, A., Koenig, M. et al. Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. *Genet Med* 17, 689–701 (2015).

2022 SAMBA ANNUAL MEETING · MAY 11 – 14, 2022